2019 MAY 30 AM 10: 42

2018 CERTIFICATION

Consumer Confidence Report (CCR)

	1	/ North Lee County Wat Public Water Syste	er Association
- 1/5	0410001,	0410024, 0410025, 0410035, 04100	040 0410041 0410042 0410043
		List PWS ID #s for all Community Water	Systems included in this CCR
mus	t be mailed or deli	ivered to the customers published in a navoner	nity Public Water System (PWS) to develop and distribute epending on the population served by the PWS, this CCR per of local circulation, or provided to the customers upon the CCR. You must email, fax (but not preferred) or eck all boxes that apply.
図	Customers wer	re informed of availability of CCR by: (Atta	ch copy of publication, water bill or other)
		☐ Advertisement in local paper (Attach	copy of advertisement)
	×	☐ On water bills (Attach copy of bill)	
		☐ Email message (Email the message to	the address below)
		☐ Other	D
	Date(s) custo	mers were informed:5/_31/2019	/ /2019 / /2019
	CCR was distr methods used	ributed by U.S. Postal Service or other of	direct delivery. Must specify other direct delivery
	Date Mailed/	Distributed: / /	
	CCR was distri	buted by Email (Email MSDH a copy)	Date Emailed: / / 2019
		☐ As a URL	(Provide Direct URL)
		☐ As an attachment	,
		☐ As text within the body of the email m	essage
	CCR was publis	shed in local newspaper. (Attach copy of pu	blished CCR or proof of publication)
	Name of New	spaper:	
		d://	
	CCR was posted	d in public places. (Attach list of locations)	Date Posted: / / 2019
Ø	CCR was posted	d on a publicly accessible internet site at the	following address:
here above and co	rification by certify that the and that I used dis preet and is consist alth, Bureau of Publ	CCR has been distributed to the customers of the tribution methods allowed by the SDWA. I furthern with the water quality monitoring data provides	assets/file/ccr2018.pdf (Provide Direct URL) as public water system in the form and manner identified her certify that the information included in this CCR is true and to the PWS officials by the Mississippi State Department
Dus	tin Hathcock	(Water Operator)	5/29/19
Name	Title (Board Presi	dent, Mayor, Owner, Admin. Contact, etc.)	Date
		Submission options (Select on	e method ONLY)
	Mail: (U.S. F MSDH, Bureau P.O. Box 1700		Email: water.reports@msdh.ms.gov
	Jackson, MS 39	9215	Fax: (601) 576 - 7800 **Not a preferred method due to poor clarity**

CCR Deadline to MSDH & Customers by July 1, 2019!

2018 Annual Drinking Water Quality Report North Lee County Water Association PWS#: 410001, 410024, 410025, 410035, 410040, 410041, 410042, 410043 May 2019

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to providing you with information because informed customers are our best allies. Our water source is from wells drawing from the Eutaw, Lower Eutaw, Eutaw-McShan and Gordo Formation Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the North Lee Water Association have received moderate rankings in terms of susceptibility to contamination.

If you have any questions about this report or concerning your water utility, please contact Dustin Hathcock at 662.869.1223. We want our valued customers to be informed about their water utility. If you want to learn more, please join us at any of our regularly scheduled meetings. They are held on the second Thursday of the month at 7:00 PM at the Birmingham Ridge Fire Department located at 947 office at 662.869.1223.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2018. In cases where monitoring wasn't required in 2018, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10.000.000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Level 1 assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

PWS ID #				TEST RESU	LIS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL/MRDL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
10. Barium	N	2018	:087	.07080727	Tunna			
13. Chromium	- N	2018			ppm	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N N	2016	.7	No Range	ppb	100	10	Discharge from steel and pulp mills; erosion of natural deposits
16. Fluoride	N		.4	0	ppm	1.3	AL=1.	3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
7. Lead		2018	.112	.109112	ppm	4		4 Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Tr. Leau	N	2015/17*	0	0	dqq	0	AL≃1	
Disinfectio	n By-Pr	oducts						
2. TTHM Fotal rihalomethanes]	_	015* 2.	B No	Range ppb		0	80 E	By-product of drinking water chlorination.
hlorine	N 2	018 1.3	3 .3	- 2.2 mg/l		0 MRD		Vater additive used to control

PWS ID#				TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL/MRDL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
8. Arsenic	IN	2017*	T.6	No Desail				
10. Barium	IN.			No Range	dqq	n/a	10	Erosion of natural deposits; runof from orchards; runoff from glass and electronics production wastes
13. Chromium		2017*	.1195	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2017*	.9	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
17. Lead	N	2015/17*	.5	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	N	2015/17*	1	0	dqq	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
20. Nitrite (as Nitrogen) 21. Selenium	N	2018	.03	No Range	ppm	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
z i. Selemum	N	2017*	1.9	No Range	ppb	50	50	Discharge from petroleum and
(7_3 4bs 🔿								metal refineries; erosion of natural deposits; discharge from mines
Volatile Or	ganic Co	ontamin	ants					
66. Ethylbenzene		2018		No Range	dad	700	700	Discharge from petroleum

76. Xylenes Disinfecti	N On Pw	2018	.002	283 No Range	ppm		10	10 Discharge from petroleum factories; discharge from chemical factories
Chlorine								
Omonne	N	2018	1.7	.6 - 2.6	mg/l	0	MRDL = 4	Water additive used to control microbes

PWS I		410025			TEST I	RESU	LTS				
Contamina	nt	Violation Y/N	Date Collected	Level Detecte	1 2 4 41 151	nples ling	Unit Measure -ment	MCLG	MCI		Likely Source of Contamination
Inorga	nic (Contan	inants								
8. Arsenic		N	2018	1.4	No Range		ppb	n/a			Erosion of natural deposits; runo from orchards; runoff from glass
10. Barium 13. Chromiu	lpa.	N	2018	.4356	.0926435	6	ppm	2		2	and electronics production waste Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper		N	2018	.6	No Range		ppb	100	10	00	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper		N	2015/17	.3	0		ppm	1.3	AL=1	.3	corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
7. Lead		N	2018	.183	.174183		ppm	4		4	Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
		N N	2015/17	l°	0	ļ	opb	0	AL=1	5 (Corrosion of household plumbing systems, erosion of natural deposits
Volatile	Org	ganic C	ontami	nants					90-0-24		
6. Xylenes		N	2018	.000639	.00051200	639 F	ppm	10	1	fa	Discharge from petroleum actories; discharge from the charge f
Disinfec	tion	By-Pr	oducts								
1. HAA5	N	2	018 5	N	lo Range	ppb	1		60	By-P	roduct of drinking water
hlorine	N	2	018 1.	3 .3	30 – 2.6	mg/l	1 0	MRD		-	fection.

PWS ID#				TEST RESU	LIS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL/MRDL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Radioactiv	e Conta	minants						
	e Conta	minants 2018	.15	No Range	nCi/l	······		
Radioactiv 6. Radium 226 Inorganic	N	2018		No Range	pCi/L	0]	5	Erosion of natural deposits
	N	2018		No Range	pCi/L ppb	0]	5	Erosion of natural deposits

Γ

10. Barium	N	20	18	.232	.220923	2	ppm	1	2		2	Discharge of drilling wastes;
13. Chromium	- N	20	I.R.	.9	I No Barrell							discharge from metal refineries; erosion of natural deposits
14. Copper	- N				No Range		ppb		100		100	Discharge from steel and pulp mills; erosion of natural deposits
17. Lead	N		5/17*	.4	0		ppm		1.3	AL≔	1.3	Corrosion of hatural deposits Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
***		200	5/17*	1	0		ppb		0	AL≃		Corrosion of household plumbing systems, erosion of natural
Disinfect	ion By-	Produ	icts					4				deposits
81. HAA5	N	2018	1	No	Range	ppb	7	0		60	By-I	Product of drinking water
Chlorine	N	2018	1	.3	~ 1.9	mg/l	_	0	MRDI		disii	nfection.
Unregula	ted Cor	tami	nanto								mic	ter additive used to control robes
Bromide	N	2018	610		0 - 610	T						
Manganese	N	2018	72		- 72	UG/L					cond som coba in ma	rally-occurring element found in earth's crust and at low centrations in seawater, and in e surface and ground water; altous chloride was formerly used edicines and as a germicide
8					- 14	OG/L					Natu comi comi mine fertili drink	rally-occurring element; mercially available in mercially available in rals; used in steel production, zer, batteries and fireworks; ing water and wastewater ment chemicals; essential

Violation	Date	Level	Pance of Data to				- the state of the
Y/N	Collected		Exceeding	Measure -ment	MCLG	MCL	Likely Source of Contamination
Contan	inants	-,			l		
N	7	1556	T No Donne	T	γ		Salato 7
-				ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
IN.	2015*	1.8	No Range	ppb	100	100	Discharge from steel and pulp
N	2015/17*	1.3	0				mills; erosion of natural deposits
IN N	2015*	120		ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
		.136	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer
	2015/17*	1	0	dqq	0	AL=15	and aluminum factories Corrosion of household plumbing systems, erosion of natural deposits
n By-Pr	oducts						1
		.2 .5	-2.5 ma/l		0 1		ater additive used to control
	N N N N By-Pro	Contaminants N 2015* N 2015* N 2015/17* N 2015/17* N 2015/17* N 2015/17*	Contaminants N 2015* .1556 N 2015* 1.8 N 2015/17* .3 N 2015/17* 1 n By-Products	N 2015* .1556 No Range N 2015* 1.8 No Range N 2015/17* .3 0 N 2015/17* 1 0 N 2015/17* 1 0 N 2015/17* 1 0	N 2015* 1.8 No Range ppm N 2015* 1.8 No Range ppm N 2015* 1.8 No Range ppm N 2015/17* .3 0 ppm N 2015* .136 No Range ppm N 2015* .136 No Range ppm N 2015/17* 1 0 ppb N 2015/17* 1 0 ppb	N 2015* .1556 No Range ppm 2 N 2015* 1.8 No Range ppb 100 N 2015/17* .3 0 ppm 1.3 N 2015* .136 No Range ppm 4 N 2015/17* 1 0 ppb 0 N 2018 1.2 5.25 5.25 N 2018 1.2 5.25 N 2018 1.2	Statistical Exceeding McL/ACL/MRDL Measure -ment

PWS ID#	410041			TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL/MRDL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination

6. Radium 226 Radium 228	N	2018		.60	No Range		pCi	L	0		5	Erosion of natural deposits
Inorganic	Con	taminan	te	1.00						L		or installal deposits
10. Barium	N	2017		.171	No Range							
13. Chromium	-				140 Kange		ppm		2		2	Discharge of drilling wastes; discharge from metal refineries;
	N	2017		.8	No Range	GARNES SE	ppb	2.37.0	100		100	erosion of natural deposits Discharge from steel and pulp
14. Copper	N	2016*		.4	0		ppm	-	1.3	AL=	12	mills; erosion of natural deposits
16. Fluoride								1	1.0	AL-	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood
io. Fidolide	N	2017*		.113	No Range		ppm	-	4		4	preservatives
17, Lead											1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer
17. Lead	N	2016*		1	0		dad	-	0	AL=	15	and aluminum factories
21. Selenium	N	2017*	_				SEA NEW			71	-	Corrosion of household plumbing systems, erosion of natural deposits
				2	No Range		ppb		50		50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from
Disinfectio	n By-	Product	ts			3110						mines
31. HAA5	N	2018	1		No Range	T made						
2. TTHM	N	- maio				ppb		0		60	By-F	Product of drinking water
Total ihalomethanes)	l N	2018	4		No Range	ppb		0		80	Ву-р	product of drinking water
hlorine	N	2018	1		.5 - 2.5	mg/l			Moci			
	L					,g/i	i	١٥	MRDL	140	Wate	er additive used to control

Violation Y/N Ontam	Date Collected	Level Detecte	Transport D	etects or		TEST RESULTS								
ontam			Excee MCL/ACL	nples ding	Unit Measure -ment	MCL	.G	MCL	Likely Source of Contamination					
	inants					117.	!_							
N	2015*	1266	TM-5											
					ppm		2		Discharge of drilling wastes; discharge from metal refineries;					
N	2015*	2.2	No Range		ppb	1	00	10	erosion of natural deposits					
N	2016*	12							Discharge from steel and pulp mills; erosion of natural deposits					
D. D			ľ		ppm	1	.3	AL=1.	3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					
	ducts								T P SSS. TOWN TOO					
20)18 5	.94	No Range	ppb		0		80	By-product of drinking water chlorination.					
20	118 1		8 1.80	ma/l		0 1	ARDI		Water additive used to control					
	N By-Pro	N 2015* N 2016* By-Products 2018 5.	N 2015* 2.2 N 2016* .2 By-Products 2018 5.94	N 2015* 2.2 No Range N 2016* .2 0 By-Products 2018 5.94 No Range	N 2015* 2.2 No Range N 2016* .2 0 By-Products 2018 5.94 No Range ppb	N 2015* 2.2 No Range ppb N 2016* .2 0 ppm By-Products 2018 5.94 No Range ppb	N 2015* 2.2 No Range ppm N 2016* .2 0 ppm 1 By-Products 2018 5.94 No Range ppb 0	N 2015* 2.2 No Range ppm 2 N 2016* 2.2 No Range ppb 100 N 2016* .2 0 ppm 1.3 By-Products 2018 5.94 No Range ppb 0	N 2015* 2.2 No Range ppb 100 10 N 2016* .2 0 ppm 1.3 AL=1. By-Products 2018 5.94 No Range ppb 0 80 80					

PWS ID#				TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL/MRDL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination

10. Barium	N	2017*	.148	8 No Range				-		
14. Copper	N	2016*		- No riange	V-1-0	ppm		2		 Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
18. Fluoride	N	2010	.2	0		ppm		1.3	AL=1	.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead			.133	No Range	¥ 1 - 5	ppm		4	5	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
21. Selenium	N	2016*		0		ppb		0	AL=1	
- Annual Control of the Control of t			1.5	No Range		ppb		50	5	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfectio 32. TTHM			S							
Total rihalomethanes]	N	2018	1.65	No Range	ppb		0		80 1	By-product of drinking water chlorination.
Chlorine	N	2017*	1	.3 – 1.85	mg/l		0 1	MRDL		Nater additive used to control

^{*} Most recent sample. No sample required for 2018.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1.800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791.

The North Lee County Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

NORTH LEE COUNTY WATER ASSOCIATION 1004 BIRMINGHAM AIDGE ROAD · SALTILLO, MS 38866 662-869-1223 · nlowa@altnet

FIRST-CLASS MAIL U.S. POSTAGE FIAIR PERMIT NO. 4 SALTILLO, MS

Pay bill at northleewater.org

PAY NET AMOUNT ON OR BEFORE DUE DATE	06/15/2019	PAY GROSS AMOUNT AFTER DUE DATE
NET AMOUNT	SAVE THIS	GROSS AMOUNT
31.25	5.00	36.25
manth la		

northleewater.org/asset/file/ ccr2018.pdf CUT OFF 6/25/19

RETURN SERVICE REQUESTED

011000005

TERESA & CHRIS EASTERLING

1178 BIRMINGHAM RIDGE RD SALTILLO MS 38866-9132

ACCOUNT NO. SERVICE FROM SERVICE TO 011000284 05/20 05/20 SERVICE ADDRESS 137 HIGHLAND RIDGE DR CURRENT | PREVIOUS USED

145527 145527

FORMSINK,

CALL 1-800-223-4460 · L-19537

FORMSINK, LLC . FOR RECADER

CHARGE FOR SERVICES

WTR 15.00 SWR 15.00 NET DUE >>> 30.00 SAVE THIS >> 5.00 GROSS DUE >> 35.00

SEE IMPORTANT NOTICE ON BACK OF BILL

RETURN THIS STUB WITH PAYMENT TO:

NORTH LEE COUNTY WATER ASSOCIATION 1004 BIRMINGHAM RIDGE HOAD . SALTILLO, MS 38866 662-869-1223 · nfcwa@att.net

Pay bill at northleewater.org

PRESORTED FIRST-CLASS MAIL U.S. POSTAGE PAID PERMIT NO. 4 SALTILLO, MS

PRESORTED

U.S. POSTAGE

PAID

PERMIT NO. 4 SALTHLO, MS

PAY GROSS AMOUNT AFTER DUE DATE

GROSS AMOUNT 20.00

FIRST-CLASS MAIL

PAY NET AMOUNT ON OR BEFORE DUE DATE 06/15/2019 PAY GROSS AMOUNT AFTER DUE DATE NET AMOUNT SAVE THIS GROSS AMOUNT 30.00 5.00 35.00

northleewater.org/asset/file/ ccr2018.pdf CUT OFF 6/25/19

RETURN SERVICE REQUESTED

06/15/2019

SAVE THIS

011000284

PAY NET AMOUNT ON OR BEFORE DUE DATE

NET AMOUNT

15.00

TOMMY & ANN GALLOWAY

137 HIGHLAND RIDGE DR SALTILLO,MS 38866

RETURN THIS STUB WITH PAYMENT TO:

NORTH LEE COUNTY WATER ASSOCIATION

1004 BIRMINGHAM RIDGE ROAD · SALTILLO, MS 38858

662-869-1223 · nicwa@att.net

Pay bill at northleewater.org

ACCOUNT NO. SERVICE FROM SERVICE TO 011001005 05/20 05/20 SERVICE ADDRESS 1197 BIRMINGHAM RIDGE RD

METER READINGS
OURHENT PREVIOUS 226312 224013 2299

RETURN SERVICE REQUESTED 011001005 TRACY THOMPSON

northleewater.org/asset/file/ ccr2018.pdf CUT OFF 6/25/19

1197 BIRMINGHAM RIDGE RD SALTILLO MS 38866

CHARGE FOR SERVICES WTR 15.00 NET DUE >>> 15.00 SAVE THIS >> 5.00 GROSS DUE >> 20.00

SEE IMPORTANT NOTICE ON BACK OF BILL

REORDER CALL 2 FORMSINK.

1-800-223-4460 · L-19537